https://sciex.com/content/SCIEX/na/us/en


Perfluoroalkyl Acids in Drinking Water – EPA Method 537

Jul 26, 2016 | Blogs, Environmental / Industrial | 0 comments

The United States Environmental Protection Agency (EPA), under the 1996 Safe Drinking Water Act (SDWA), requires a new list of no more than 30 unregulated contaminants to be monitored by public drinking water systems. Known as the Unregulated Contaminant Monitoring Rule (UCMR), a new list is published every five years. The last rule, UCMR3, was published May 2, 2012, and is the focus of the following application note, “Analysis of Perfluoroalkyl (PFFA) Acids Specified under the UCMR3 Using the QTRAP® 6500 LC-MS/MS system,” which can be found in the Food and Environmental Compendium.

Overview
Using the guidelines laid out by EPA Method 537, “A Determination of Selected Perfluoroalkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS),” this application note describes the performance of the QTRAP 6500. Within the scope of EPA 537, there are 14 PFAAs. Six are specified under the UCMR3 monitoring list.

Process
Sample preparation and data processing were carried out according to EPA Method 537 without deviation unless specifically noted. The analysis was carried out using the QTRAP 6500 coupled with the Agilent 1260 HPLC with an Eksigent ULC 100 HTC-xt autosampler. Quantitation using MultiQuant ™ 3.0.

Conclusion
The lower the detection, the harder the QTRAP 6500 works for you as it easily meets the UCMR3 reporting limits. See what more it can do when you download the compendium. Download the compendium >

Is “right first time, every time” a pipedream for metabolite identification by LC-MS?

If we lived in an ideal world, it would be possible to unambiguously identify metabolites using a single analytical experiment. This analytical technique would need to be efficient and easily generate the information needed from a routine assay that is also robust, enabling confident decision-making during drug discovery.

Supporting new CRISPR gene editing systems

Prime editing (PE) is a next-generation gene editing technology that utilizes a Cas9 protein fused to a prime editing guide ribonucleic acid (pegRNA) to achieve high CRISPR/Cas9 editing efficiency and precision. However, the length requirement of pegRNAs at 120–250 nucleotides (nt) and their high level of secondary structure formation present analytical challenges for the purity analysis of chemically synthesized pegRNAs during development and quality control (QC).

A new approach for comprehensive AAV evaluation including full and empty analysis

Certain next-gen vaccines and gene therapy applications rely on the usage of adeno-associated viruses (AAV) as a delivery vehicle. To ensure the safety and efficacy of viral vector drugs, multiple critical quality attributes (CQAs) need to be well characterized.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial