https://sciex.com/content/SCIEX/na/us/en


Setting Records with Fast Glycan Technology

Mar 17, 2017 | Biopharma, Blogs | 0 comments

There is a lot of talk going around in the lab, and it has to do with the newly released Fast Glycan Labeling and Analysis technology. Where once research analysts needed to set aside days to perform glycan analysis, now takes an hour or so. Glycans are immediately identified by the software – so no need for data interpretation. That’s up to 5x faster than HILIC.

 

Short and simple 60-minute sample prep, followed by a 5-minute high-resolution separation provide immediate glycan identification and quantitation. Since glycan identification is automated, the Fast Glycan technology also eliminates the need for manual database searches while removing the potential for human error from the process.

Bioprocess International recognized our Fast Glycan technology and awarded it the 2016 Best Technology Application – Analytical Award.

Based on magnetic bead technology, it does not require centrifugation or advanced pipetting techniques, making the assay suitable for manual pipetting as well as automation. Researchers can, therefore, quickly detect changes in glycosylation, helping profile glycans that may effect changes in function, efficacy, and clearance of their biologics.

What does this mean for your lab, and how can you test the process yourself? To help you better understand the process, researchers documented the Fast Glycan Labeling and Analysis technology for N-glycosylation analysis in the following application note, “High-Resolution Separation and Identification in Minutes.”

Discover the winning combination for the lab using the PA 800 Plus Pharmaceutical Analysis System.Learn more >

For research use only. Not for use in diagnostic procedures.

Questions and answers to help improve your mycotoxin analysis

During a recent webinar I shared method details for mycotoxin analysis on the SCIEX 7500 system. In this blog i will share the Q&A for the submitted questions that we did not have chance to answer during the live webinar.

A 2-fold revolution: MS approaches for the bioanalysis of oligonucleotide therapeutics

In 1998, the US Food and Drug Administration (FDA) approved fomivirsen as the first therapeutic oligonucleotide therapeutic. This approval marked a revolution of mechanism of action discovered decades before finally coming to fruition. Since then, the landscape of chemical modifications of oligonucleotides, conjugations and formulations has evolved tremendously, contributing to improvements in stability, efficacy and safety. Today, more than a dozen antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) drugs are on the market, most of which are designated as orphan drugs for treating rare genetic diseases.

Is “right first time, every time” a pipedream for metabolite identification by LC-MS?

If we lived in an ideal world, it would be possible to unambiguously identify metabolites using a single analytical experiment. This analytical technique would need to be efficient and easily generate the information needed from a routine assay that is also robust, enabling confident decision-making during drug discovery.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial