https://sciex.com/content/SCIEX/na/us/en


Simplifying Polar Pesticides Within a Single Analysis

Feb 15, 2018 | Blogs, Food / Beverage | 0 comments

Glyphosate is a polar pesticide widely used as a garden herbicide. It is an ingredient in the world’s bestselling weed killer, which farmers consider one of their best solutions to their super weed problems.

However, the chemical has become one of the most controversial topics as concerns about health implications increase. What’s more, lack of rigorous testing methods has also drawn criticism. Yet, regulators across seem to have differing opinions on these issues and its widely used in farming is still authorized.

Many contemporary methods fail to address reproducibility and sensitivity. Consequently, labs are seeking even more efficient and robust analytical testing methods to help identify as many polar pesticides in food, feed, and environment, within in a single analysis.  

There are 2 constraints you need to know need when evaluating glyphosate testing methods:

  1. While ion chromatography has been shown to be beneficial for separation, there are downsides. The need for a suppressor is detrimental to MS analysis and the inefficiency of having to change inlet systems on a mass spectrometers systems that heavily work in reverse-phase LC.
  2. Previous analytical strategies, especially for LC-MS/MS analysis, have required laborious and often time-consuming derivatization of glyphosate and its metabolites to allow the polar nature of the compounds to be identified more easily under reverse-phase LC-MS conditions.

The good news? SCIEX has teamed up with NofaLab, a Rotterdam-based contract testing laboratory to develop a non-derivatized method.

This new method, is based on ion chromatography and optimized on the SCIEX 6500+ QTRAP® LC-MS/MS System, has high sensitivity, linearity, and reproducibility for food, feed, and water samples.

Download a content pack to learn more about this robust and sensitive method and how you can stay ahead of your glyphosate analysis. The content pack includes:

  • Comprehensive tech note which details the performance of this method
  • Recorded webinar from Wim Broer at Nofalab Laboratories
  • Overview flyer

 

Questions and answers to help improve your mycotoxin analysis

During a recent webinar I shared method details for mycotoxin analysis on the SCIEX 7500 system. In this blog i will share the Q&A for the submitted questions that we did not have chance to answer during the live webinar.

A 2-fold revolution: MS approaches for the bioanalysis of oligonucleotide therapeutics

In 1998, the US Food and Drug Administration (FDA) approved fomivirsen as the first therapeutic oligonucleotide therapeutic. This approval marked a revolution of mechanism of action discovered decades before finally coming to fruition. Since then, the landscape of chemical modifications of oligonucleotides, conjugations and formulations has evolved tremendously, contributing to improvements in stability, efficacy and safety. Today, more than a dozen antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) drugs are on the market, most of which are designated as orphan drugs for treating rare genetic diseases.

Is “right first time, every time” a pipedream for metabolite identification by LC-MS?

If we lived in an ideal world, it would be possible to unambiguously identify metabolites using a single analytical experiment. This analytical technique would need to be efficient and easily generate the information needed from a routine assay that is also robust, enabling confident decision-making during drug discovery.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial