https://sciex.com/content/SCIEX/na/us/en


Top Three Ways SCIEX has fun with Halloween Candy

Oct 31, 2015 | Blogs, Food / Beverage | 0 comments

Halloween is the time for lots of trick or treats ranging from chocolate bars to lollipops and oh so good candy corn. However, come October 31, it is time to mind sneaky ingredients that have the best disguise of all. From pork extracts, artificial sweeteners, to stuff that is hard to pronounce, SCIEX digs up some of our recent Food and Beverage studies for some ghoulishly good fun.

Where do Gummy Bears get their Squishiness From?

Gummy bears have to get their gelatinous shape from somewhere, and that somewhere happens to be collagen extracted from skin, bones and connective tissue of cows, chickens, pigs, and fish. ELISA testing, which is typically used to detect these animal proteins in your favorite gummy treats, can produce false negatives or positives in that animal protein markers may not be detected or accurately identified. Now, if only the wrapper read it was tested in a lab using LC-MS/MS could you be more certain your gummy bears and any other candies containing gelatin were pork-free. Read the complete study here.

What do Plastics and Candy have to do with One Another?

Up next are Phthalates, a chemical agent found in plastics that makes them more bendable or harder to break. What does this have to do with candy? Some derivatives are used in wrappers and while it is unknown how much exposure can cause a health risk, some forms have been blamed for endocrine disruption in rats. However, it is not just candy wrappers you will find phthalates in, as it migrates from most packaging to foods.  If you are interested in knowing how LC-MS/MS can enhance the detection of phthalates in food and beverage samples, we have the study for you.

Artifical Sweeteners Be Gone

Then there are artificial sweeteners that are better for your teeth and waistline but could cause your trick or treater to crave even more sweets. Sigh. To be sure the label is as true as its ingredients reliable detection is needed. This is where one SCIEX study proved useful as LC-MS/MS proves to be five times faster as well as more than 100 to 1000 fold more sensitive than traditional LC methods.

Questions and answers to help improve your mycotoxin analysis

During a recent webinar I shared method details for mycotoxin analysis on the SCIEX 7500 system. In this blog i will share the Q&A for the submitted questions that we did not have chance to answer during the live webinar.

A 2-fold revolution: MS approaches for the bioanalysis of oligonucleotide therapeutics

In 1998, the US Food and Drug Administration (FDA) approved fomivirsen as the first therapeutic oligonucleotide therapeutic. This approval marked a revolution of mechanism of action discovered decades before finally coming to fruition. Since then, the landscape of chemical modifications of oligonucleotides, conjugations and formulations has evolved tremendously, contributing to improvements in stability, efficacy and safety. Today, more than a dozen antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) drugs are on the market, most of which are designated as orphan drugs for treating rare genetic diseases.

Is “right first time, every time” a pipedream for metabolite identification by LC-MS?

If we lived in an ideal world, it would be possible to unambiguously identify metabolites using a single analytical experiment. This analytical technique would need to be efficient and easily generate the information needed from a routine assay that is also robust, enabling confident decision-making during drug discovery.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial