GEN-MKT-18-7897-A
Jun 20, 2016 | Blogs, Environmental / Industrial, Food / Beverage | 0 comments
No other pesticide has courted more media attention and controversy in recent months than glyphosate, with governments and national agencies debating its use and health effects. The following links just show some of the media attention this organophosphorus compound has received:
Download Presentation >
However irrespective of whether it poses a risk or not the analysis of glyphosate and other polar compounds in food and beverage products has been a challenge. Attaining the required sensitivity, dealing with complex matrices and sample prep can put a serious strain and demand on your laboratory. A common practice for the analysis of glyphosate and the other associated polar compounds such as AMPA, Glufosinate, and MMPA is to derivatize the samples during the preparation.
The derivatization method may be effective however there is a serious efficiency problem associated with it, the time it takes the analysts to prep and extract the sample. Derivatization can be a time-consuming procedure and can, therefore, affect a lab’s productivity, turnaround, and margins.
In a recent presentation, on the QTRAP® 6500+ System, we conducted an in-depth evaluation into the Quantitation of Underivatized Glyphosate and Other Polar Pesticides. This comprehensive study details the various techniques and LC conditions that we tested on a variety of matrices. In this study, we show how the SelexION® reduces interferences and can meet your required levels of sensitivity.
PFAS analysis is complex, but expert guidance doesn’t have to be. In this episode of our ‘Ask the PFAS expert series’, we’re joined by Michael Scherer, Application Lead for Food and Environmental, to answer the most pressing questions in PFAS analysis. From why LC-MS/MS systems are the gold standard for analyzing diverse PFAS compounds, to which EU methods deliver reliable results for drinking water, and to practical steps to prevent contamination, Michael shares actionable insights to help laboratories achieve accuracy, consistency, and confidence in their workflows.
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
In the field of food chemistry and health, Prof. Nils Helge Schebb and his team at the University of Wuppertal are at the forefront of applying cutting-edge analytical methods to investigate how dietary components affect inflammation and chronic disease. Their work focuses on lipid mediators, particularly oxylipins, and how these molecules can be precisely measured and interpreted using liquid chromatography-tandem mass spectrometry (LC-MS).
Posted by
You must be logged in to post a comment.
Share this post with your network