Tags

  • Sorting

  • Filters

The risky business of aflatoxins in milk

If you’re in the dairy or food testing business, you know the threat aflatoxins pose. Aflatoxins are a type of mycotoxin produced by Aspergillus parasiticus, aspergillus flavus , and rarely aspergillus nomius.1 These are likely the most extensively researched group of mycotoxins because of their adverse health effects.2 What’s more, they are widely found in a variety of crops, namely maize, tree nuts, and spices. Believed to be primarily caused by rising temperatures and humidity, these naturally occurring fungi grow on crops in the field, or during storage of feed and raw materials, where they can potentially produce toxins that enter the food chain.

What’s in your citrus oil?

Craig Butt explains a non-targeted omics approach to characterizing and profiling compounds in citrus oil Read time: 4 minutes There is increasing interest among consumers in the benefits of natural products containing citrus beyond the traditionally known benefits of...

Developing a method for nitrosamine analysis in pharmaceutical products

In our previous blogs we discussed the need for a more comprehensive approach for monitoring contaminants in finished drug products.1,2 Here we cover a generalized approach for the targeted, quantitative LC-MS/MS analysis of several commonly encountered nitrosamines in pharmaceuticals and ways to address specific challenges with their analysis.

The risky business of aflatoxins in milk

The risky business of aflatoxins in milk

If you’re in the dairy or food testing business, you know the threat aflatoxins pose. Aflatoxins are a type of mycotoxin produced by Aspergillus parasiticus, aspergillus flavus , and rarely aspergillus nomius.1 These are likely the most extensively researched group of mycotoxins because of their adverse health effects.2 What’s more, they are widely found in a variety of crops, namely maize, tree nuts, and spices. Believed to be primarily caused by rising temperatures and humidity, these naturally occurring fungi grow on crops in the field, or during storage of feed and raw materials, where they can potentially produce toxins that enter the food chain.

What’s in your citrus oil?

What’s in your citrus oil?

Craig Butt explains a non-targeted omics approach to characterizing and profiling compounds in citrus oil Read time: 4 minutes There is increasing interest among consumers in the benefits of natural products containing citrus beyond the traditionally known benefits of...

The honey sting

The honey sting

As a consumer it’s hard for me not to feel inundated with claims that our food is “all-natural” or “chemical-free” or that we should buy certain “superfoods” for their health benefits.  We read labels and trust that the product we are buying is what we are truly...

A rising star in food allergen research: proteomics of shellfish allergen

A rising star in food allergen research: proteomics of shellfish allergen

It’s important to know what you’re eating, especially if you suffer from a food allergy.

About 220 million people worldwide live with a food allergy.1 These numbers, along with the complexity and severity of conditions, continue to rise. In America, there are about 32 million food allergy sufferers—5.6 million of those are children under the age of 18.2.2 That’s 1 out of every 13 children, or about 2 in every classroom. From a financial perspective, the cost of food allergy childcare for US families is up to $25 billion

Integration of Electrophoresis into a Single, “Plug-and-Spray” Device Offers a New Approach for Metabolomics Applications

Integration of Electrophoresis into a Single, “Plug-and-Spray” Device Offers a New Approach for Metabolomics Applications

Teasing apart the metabolome: CESI-MS separation of small, anionic compounds
Metabolomics, an emerging field focused on the chemical processes central to cellular metabolism gives scientists a snapshot of the cellular metabolic state, or metabolome at a given time. Highly complex, the metabolome contains a large and diverse group of small molecules and requires a systematic understanding of chemical end-products of cellular processes.  Used in conjunction with genomics and proteomics information and researchers can gain a deeper understanding of an organism’s physiology. As a result, insights on a disease’s progress or an organism’s health status become clearer. However, there is a caveat. Teasing apart metabolome components and identifying each molecule is a significant analytical challenge that requires specialized applications and approaches able to separate very small, chemically similar analytes from each other.

No Results Found

The page you requested could not be found. Try refining your search, or use the navigation above to locate the post.

No Results Found

The page you requested could not be found. Try refining your search, or use the navigation above to locate the post.