GEN-MKT-18-7897-A
Apr 19, 2017 | Biopharma, Blogs | 0 comments
Quantitation of monoclonal antibodies (mAbs) in biological fluids is important during all stages of antibody drug development. First developed in the 1970s, therapeutic mAbs have both research and medicinal impact as they can be used for diagnosis and treatment of a wide variety of diseases, and have a high level of specificity.
Taking upwards of 10 years to bring a therapeutic mAb to market, discovering effective, high-throughput analysis methods is prudent for pharmaceutical companies to help bring these new therapies to market.
Although traditional immunoassays are typically used for biotherapeutic bioanalysis, more recently LC-MS is adopted because of its high selectivity, accuracy, and precision. In this technote, “Improving Sensitivity for an Immunocapture LC-MS Assay of Infliximab in Rat Plasma Using Trap-and-Elute MicroLC-MS,” researchers present results of samples prepared using a generic anti-human IgG immunocapture workflow.
In this method, researchers used the selective extraction of human IgG antibodies from rat plasma and then compared the use of High Flow LC-MS and Trap-Elute MicroLC-MS methodologies.
Discover how the trap-elute method ensures similar throughput to the conventional high-flow LC-MS workflow, while injecting the same 20 µL of sample, but offers enhanced protection of the MicroLC column and the MS from contamination, thus providing a more robust method.
The utilization of a trap-elute MicroLC-MS method provides a solution for applications where mAbs need to be quantified in small volume samples and at low concentrations.Learn more about micro-LC products can enhance your biologics bioanalysis studies >
As of summer 2016, 30 monoclonal antibodies (mAbs), had been approved for the treatment of certain cancers, autoimmune and infectious diseases, with even more in development.
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Electron-Activated Dissociation (EAD) is transforming the fields of metabolomics and lipidomics by providing enhanced fragmentation techniques that offer deeper insights into molecular structures. In September, Technology Networks hosted a webinar, “Enhancing Mass-Based Omics Analysis in Model Organisms,” featuring Dr. Valentina Calabrese from the Institute of Analytical Sciences at the University of Lyon. Valentina shared her insights on improving omics-based mass spectrometry analysis for toxicology studies using model organisms, particularly in metabolomics and lipidomics. This blog explores the additional functionalities EAD offers, its benefits in untargeted workflows, its incorporation into GNPS and molecular networking, and the future role it could play in these scientific domains.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
Posted by
You must be logged in to post a comment.
Share this post with your network