https://sciex.com/content/SCIEX/na/us/en


The Power Behind LC-MS for Quantifying mAb Therapeutics

Apr 19, 2017 | Biopharma, Blogs | 0 comments

Quantitation of monoclonal antibodies (mAbs) in biological fluids is important during all stages of antibody drug development. First developed in the 1970s, therapeutic mAbs have both research and medicinal impact as they can be used for diagnosis and treatment of a wide variety of diseases, and have a high level of specificity.

Taking upwards of 10 years to bring a therapeutic mAb to market, discovering effective, high-throughput analysis methods is prudent for pharmaceutical companies to help bring these new therapies to market.

Although traditional immunoassays are typically used for biotherapeutic bioanalysis, more recently LC-MS is adopted because of its high selectivity, accuracy, and precision. In this technote, “Improving Sensitivity for an Immunocapture LC-MS Assay of Infliximab in Rat Plasma Using Trap-and-Elute MicroLC-MS,” researchers present results of samples prepared using a generic anti-human IgG immunocapture workflow.

In this method, researchers used the selective extraction of human IgG antibodies from rat plasma and then compared the use of  High Flow LC-MS and Trap-Elute MicroLC-MS methodologies.

Discover how the trap-elute method ensures similar throughput to the conventional high-flow LC-MS workflow, while injecting the same 20 µL of sample, but offers enhanced protection of the MicroLC column and the MS from contamination, thus providing a more robust method.

The utilization of a trap-elute MicroLC-MS method provides a solution for applications where mAbs need to be quantified in small volume samples and at low concentrations.Learn more about micro-LC products can enhance your biologics bioanalysis studies >

As of summer 2016, 30 monoclonal antibodies (mAbs), had been approved for the treatment of certain cancers, autoimmune and infectious diseases, with even more in development.

 

Supporting new CRISPR gene editing systems

Prime editing (PE) is a next-generation gene editing technology that utilizes a Cas9 protein fused to a prime editing guide ribonucleic acid (pegRNA) to achieve high CRISPR/Cas9 editing efficiency and precision. However, the length requirement of pegRNAs at 120–250 nucleotides (nt) and their high level of secondary structure formation present analytical challenges for the purity analysis of chemically synthesized pegRNAs during development and quality control (QC).

A new approach for comprehensive AAV evaluation including full and empty analysis

Certain next-gen vaccines and gene therapy applications rely on the usage of adeno-associated viruses (AAV) as a delivery vehicle. To ensure the safety and efficacy of viral vector drugs, multiple critical quality attributes (CQAs) need to be well characterized.

The rising tide of food allergies: Common questions and crucial insights

Allergy policies for nut-free commercial flights and nut-free childcare settings are not a rare occurrence nowadays—the reason is a rise in food allergies. Nuts are the most potent allergenic foods in terms of the amount that is required to elicit an allergic reaction and the severity of those reactions.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial