GEN-MKT-18-7897-A
Jun 23, 2017 | Biopharma, Blogs, Pharma | 0 comments
Are you tasked with the bioanalysis of antibody drug conjugates (ADCs)? If so, you know they represent a rapidly growing class of biotherapeutics, but their unique chemical structure makes quantitative analysis particularly challenging.
So, what is the best technique to create a novel quantitative analysis solution that accelerates method development and improves the performance of ADC pharmacokinetic assays?
Typically used Ligand binding assays (LBA) such as Enzyme-Linked Immunosorbent Assays (ELISA) have many advantages. However, LBAs can suffer from high variability, limited dynamic range, and problems with selectivity. An alternative comes with liquid chromatography-tandem mass spectrometry (LC-MS/MS), which has found widespread use in the quantitative analysis of small molecule drugs. While LC-MS/MS assays are exceedingly selective, with excellent dynamic range and reproducibility, they can lack sensitivity when applied to protein therapeutics.
In search of a solution, our experts developed a unique workflow with outstanding results. We combined a universal immunocapture enrichment strategy with sample preparation and a hybrid LBA microflow LC-MS/MS technique and applied it to the total antibody analysis of the ADC of Ado-trastuzumab emtansine in plasma.Read the full report in Chromatography Today >
Some of the highlights:
Read the full article >
This hybrid LBA microflow LC-MS/MS workflow using high capacity streptavidin coated magnetic beads provides a customizable immunocapture strategy that enables the rapid development of high sensitivity pharmacokinetic assays of biotherapeutics during pre-clinical or phase HC studies.
The workflow applies to mAB based therapeutics and results in faster assay development with wide dynamic range, high selectivity, and high sensitivity, with a lower LLOQs than typically achieved by LC-MS/MS using a direct plasma or pellet digest.
Find out how our BioBA Solution can accelerate your biologics bioanalysis >
It is no secret that (bio)pharmaceutical research and development is complex, both scientific and regulatory processes. Here is an overview of just some of the ways SCIEX is working to support these challenges.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
Posted by
You must be logged in to post a comment.
Share this post with your network