GEN-MKT-18-7897-A
Aug 10, 2017 | Blogs, Life Science Research, Metabolomics | 0 comments
I recently had the opportunity to catch up with Baljit Ubhi to discuss the top questions you’re asking in regards to using Microflow HILIIC Chromatography for Targeted Metabolomics. Here’s what Bal said:
Many of the metabolites of interest in the study of metabolomics are extremely polar and therefore often unable to be analyzed through traditional coupling of reversed phase (RP) chromatography and mass spectrometry. Also to detect and quantify key metabolites from pathways of biochemical importance, samples must be run on both reversed phase and normal phase, in negative and positive ion modes requiring a total of four injections.
We have implemented hydrophilic chromatography (HILIC) with microflow and mass spectrometry to develop a method for screening over 300 polar metabolites. HILIC allows separation by partitioning of analytes between an aqueous enriched layer of a polar stationary phase. HILIC conditions typically use high organic, with a moderate amount of a salt (i.e. 20-100mM ammonium formate or acetate, pH 4.4 or 5.5. respectively). This method deviates by having 20 mM ammonium hydroxide in both mobile phases to provide constant pH of 9.0 during the chromatographic separation. The high pH deprotonates the stationary phase and allows for better selectivity of the polar metabolites. The method is multiple reaction monitoring (MRM) with positive/negative polarity switching allowing the collection of these key metabolites in a single injection!
While microflow has become increasingly popular for many applications, microflow for metabolomics has not been readily employed because the typically used (aqueous) sample solvent does not allow for injecting larger volumes of samples without sacrificing chromatographic resolution. However, by simply reconstituting the sample in an organic solvent (95% acetonitrile, pH 9), we were able to inject up to 5 µL onto the microLC column, while maintaining excellent peak shape.
The microflow Luna-NH2 HILIC chromatography provides excellent chromatographic separation of polar, hydrophilic metabolites. The cross-linked aminopropyl phase gives a slightly different selectivity than the traditional amide phase; it gives higher coverage of the metabolome when compared to the amide functionality. This allows for improved sensitivity with signal-to-noise (S/N) improvement of up to 60X and up to 50% higher coverage of the metabolome than traditional analytical approaches (see table above).
It is no secret that (bio)pharmaceutical research and development is complex, both scientific and regulatory processes. Here is an overview of just some of the ways SCIEX is working to support these challenges.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
Posted by
You must be logged in to post a comment.
Share this post with your network