Why Microflow HILIC Chromatography for Targeted Metabolomics Applications?

Aug 10, 2017 | Blogs, Life Science Research, Metabolomics | 0 comments


I recently had the opportunity to catch up with Baljit Ubhi to discuss the top questions you’re asking in regards to using Microflow HILIIC Chromatography for Targeted Metabolomics. Here’s what Bal said:

Why is analyzing polar metabolites so challenging?

Many of the metabolites of interest in the study of metabolomics are extremely polar and therefore often unable to be analyzed through traditional coupling of reversed phase (RP) chromatography and mass spectrometry. Also to detect and quantify key metabolites from pathways of biochemical importance, samples must be run on both reversed phase and normal phase, in negative and positive ion modes requiring a total of four injections.

How does this workflow address those challenges?

We have implemented hydrophilic chromatography (HILIC) with microflow and mass spectrometry to develop a method for screening over 300 polar metabolites. HILIC allows separation by partitioning of analytes between an aqueous enriched layer of a polar stationary phase. HILIC conditions typically use high organic, with a moderate amount of a salt (i.e. 20-100mM ammonium formate or acetate, pH 4.4 or 5.5. respectively). This method deviates by having 20 mM ammonium hydroxide in both mobile phases to provide constant pH of 9.0 during the chromatographic separation. The high pH deprotonates the stationary phase and allows for better selectivity of the polar metabolites. The method is multiple reaction monitoring (MRM) with positive/negative polarity switching allowing the collection of these key metabolites in a single injection!

What is unique about the sample prep and chromatography?

While microflow has become increasingly popular for many applications, microflow for metabolomics has not been readily employed because the typically used (aqueous) sample solvent does not allow for injecting larger volumes of samples without sacrificing chromatographic resolution. However, by simply reconstituting the sample in an organic solvent (95% acetonitrile, pH 9), we were able to inject up to 5 µL onto the microLC column, while maintaining excellent peak shape.

How does microflow LC compare to traditional high flow LC approaches for metabolomics? What makes it better?

The microflow Luna-NH2 HILIC chromatography provides excellent chromatographic separation of polar, hydrophilic metabolites. The cross-linked aminopropyl phase gives a slightly different selectivity than the traditional amide phase; it gives higher coverage of the metabolome when compared to the amide functionality. This allows for improved sensitivity with signal-to-noise (S/N) improvement of up to 60X and up to 50% higher coverage of the metabolome than traditional analytical approaches (see table above).

Ask us anything: answers to 6 burning questions about the Echo® MS system

Experts Aaron Stella and Jacob McCabe from SCIEX answer 6 burning questions from customers about the Echo® MS system.

Easing the demands of a compliant pharmaceutical laboratory

At SCIEX, we are proud to provide analytical systems to the pharmaceutical industry. We work hard to understand the demands of analytical work and the processes required to develop and manufacture drugs.

Analytical techniques for novel psychoactive substances (NPS) screening

The increased prevalence of novel psychoactive substances (NPS) in the recreational drug market has been a major contributor to the ongoing opioid crisis. NPS are newly emerging compounds designed to mimic existing recreational drugs and have become potent alternatives to controlled opioids. They are also frequently used as adulterants or cutting agents for commonly abused drugs. Continuous abuse of these substances can result in severe intoxication and, in some cases, fatal overdose.

Posted by


Submit a Comment