Ion Formation Control Is the Key to Increasing System Robustness

May 31, 2018 | Blogs, Technology | 0 comments

Traditional mass spectrometry ionization methods such as electronic spray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), are popular methods for detecting the molecular weight of proteins, peptides, and other biologics. The reason being both methods allow for measurement of large molecular weight1 while their sensitivity leads to accurate quantitative and qualitative results.

Two Principal Disadvantages of These Methods
However, let’s say you are in the lab running thousands of samples. Both ESI and MALDI require advanced sample prep via capillary electrophoresis (CE) or liquid chromatography (LC) analysis. Additionally, the apparatus itself is difficult to clean due to previous contamination from various residues2. These factors are probably two of the prime disadvantages of these methods.

The Solution
What if there was a way you could control the formation of ions only when data collection is required? That is the topic of this tech note, Increasing System Robustness with Ion Formation Control. Researchers in the study significantly extended their system operation before instrument cleaning was required, thus, saving time.

The Key to Scheduled Ionization Success Is in the Software
A version of Analyst® software 1.7 was used for acquisition. This version turns off the ionization voltage when no data collection is required. The ionization voltage is also turned off once data collection is complete and remains off until the LC method is completed, and turned off between samples. This mode of operation, where the ionization voltage is turned on for data collection only, is referred to as Scheduled Ionization. Using this approach, all conventional acquisition workflows (MRM, Scheduled MRM™ algorithm, IDA, SWATH® Acquisition) can be supported with a common user interface.

The Take-Away
Controlling the ion formation can effectively reduce contamination of ion optics under analytical conditions. By scheduling the formation of ions, it is possible to extend the use of the instrument over prolonged duration due to the reduction of contamination of the front end.

Also, these benefits are like using a divert valve, but without the complexity of additional hardware. As MS instruments move into more routine and automated environments, fewer operator interventions are needed.

Download the tech note to learn more about how the Scheduled Ionization feature can offer you at least 2X longer sustained instrument operation before required cleaning.

Ready to improve your lab’s productivity with Analyst Software 1.7? Find out more about how to upgrade >Download Tech Note >

References
1. http://chemistry.emory.edu/msc/tutorial/mass-spectrometry-ionization.html
2. https://chem.libretexts.org/Core/Analytical_Chemistry/Instrumental_Analysis/Mass_Spectrometry/mass_Spectrometers_(Instrumentation)/Electrospray_Ionization_Mass_Spectrometry

Automation integration for the Echo® MS system

The Echo® MS system is specifically designed to be compatible with a variety of automation options to allow labs the flexibility to personalize their setup to meet their specific needs. To help you make the best decisions for your own lab, here are the answers to some...

Telling the PFAS story with pine needles

As an ever-expanding group of chemicals, per- and polyfluoroalkyl substances (PFAS) require novel techniques to monitor their current and historical presence in the environment. Concerns over exposure to PFAS chemicals continue to grow, with some having known toxic characteristics and the potential effects of others remaining unknown.1 In addition, while PFAS are one of the most persistent synthetic chemicals to date, most of them hardly degrade in the environment.2 So, how long do traces of PFAS last in our environment? Two tools used to help answer this question are active samplers and passive samplers.

Posted by

0 Comments

Submit a Comment