Turbo charging your LC-MS/MS analysis

Nov 7, 2019 | Blogs, Technology | 0 comments

Would you like to take your LC-MS/MS analysis from 0 to 3 mL/min without the complexity of changing probes or splitting the LC flow? Then take a look into the Turbo V™ ion source from SCIEX.

Introduced more than 15 years ago, the Turbo V ion source continues to be a gold standard for rugged and user-friendly source design, for both ESI and APCI ionization. This shrewd architecture provides outstanding robustness and sensitivity when analyzing complex biological matrices with minimal maintenance. By merging two orthogonal streams of hot gas in the ESI region, efficient desolvation and hydrodynamic focusing of ions towards the sampling orifice is achieved.

For higher flow rate applications, this can translate to boosts in sensitivity of several orders of magnitude over unheated ESI sources. Desolvation is greatly improved without disrupting the curtain gas flow and greatly boosts the robustness of the entire system. Figure 1 schematically represents the heated gas flows within the Turbo V source.

The success of the Turbo V ion source over the years served as the inspiration and foundation upon which the more recently introduced IonDrive™ Turbo V and OptiFlow® Turbo V ion sources are designed. Each of these sources benefits from the use of orthogonally placed jets of heated gas directed at the liquid sample spray to enable even more efficiency of desolvation at different liquid flow regimes. While robustness and ruggedness were built in from the start, plug-and-play simplicity and a “just put it on, and it works” engineering is typical of all present-day SCIEX sources based on the Turbo V. Figure 2 highlights the wider heaters involved with the IonDrive Turbo V design for increased desolvation and thus higher sensitivity. The red square indicates the ‘sweet spot’ of standard Turbo V and the blue square highlights the bigger ‘sweet spot’ of IonDrive.

Key benefits of the IonDrive Turbo V Source

  • High sensitivity for any matrix with enhanced ionization efficiency
    • Sensitivity is gained from hydrodynamic focusing of ESI droplets with a wider heater sweet spot in the Turbo V IonDrive source
  • Extraordinary robustness in performance providing higher productivity
    • The simple source architecture and orthogonal spray design with no complex spray path provides uniform temperature distribution and optimized curtain gas flow to improve robustness and ruggedness
  • High throughput analysis over a wide range of flow rates
    • With functional flow rate ranges from 5µl/min to 3 mL/min, the IonDrive Turbo V source is the perfect match for both micro flow HPLC applications with new low dispersion electrodes and analytical flow UHPLC flow rates, delivering unmatched desolvation and stability for the most demanding applications
  • Wider compound class coverage
    • The ability to quickly interchange ionization modes between APCI and ESI enables wider compound class coverage and easy and faster method development
  • Simple plug and play ion source design
    • A tool-free source design enables plug and play capability with almost zero maintenance

The recent introduction of OptiFlow technology allows the use of the Turbo V design to be translated to lower flow rate chromatography, such as nano and micro-flow rates. The benefit of lower flows can help with gains in sensitivity especially when you are ‘sample limited’. Significant research was done to develop a low flow source that is sensitive while maintaining high robustness and ease of use of higher flow sources. The result is an ion source, based on the legendary Turbo V design, with the ability to switch easily between nano and micro flow regimes. No need to change source, break vacuum and the system can be back up and running in minutes. Simple, robust and reliable. Figure 3 shows a picture of the Optiflow ion source based on the Turbo V geometry.Learn More about the Legendary Turbo V Ion Source >

To see more about the nearly 50 years of innovations of SCIEX mass spectrometry technology visit the Generation Quant Docu-Series.

Discover high-throughput LNP-mRNA integrity profiling

Lipid-based nanoparticles (LNPs) are effective non-viral vectors for delivering messenger RNA (mRNA) products, most notably used for production of vaccines against the recent SARS-CoV-2 pandemic.

Eliminate chick culling with innovative technology

While it sometimes seems questionable whether humanity and modern technology can coexist, technological advances in science can help pave the way to more compassionate business practices.

Using wastewater monitoring to assess exposure to PFAS

Per-and polyfluorinated alkyl substances (PFAS) are known for their water- and grease-resistant properties, which make them useful in many everyday items. In fact, a study from 2020 estimated over 200 “use categories” covering more than 1,400 individual PFAS compounds in commercial products—they are truly all around us. Due to their extensive presence and potentially harmful effects (these effects are still mostly uncertain), exposure to PFAS is a growing concern. Humans and wildlife have been exposed to these chemicals through a variety of routes, including food packaging, drinking water and cleaning products.

Posted by

Ashley Sage is the Senior Manager for Global Portfolio and Technology Strategic Marketing at SCIEX. He is responsible for looking after the strategic marketing campaigns for the product and technology portfolio. Most recently, Ashley was involved in the Generation Quant video creation and campaign. In his free time, Ashley enjoys golfing and spending time with his family.


Submit a Comment