GEN-MKT-18-7897-A
May 7, 2020 | Biopharma, Blogs, Pharma | 0 comments
For many of you working to develop gene therapy drugs, you know that the time to market the drug is critical. Because gene therapeutics cure diseases by targeting specific genes, it is a constant race to see who develops the drug first. Unlike other classes of drugs where multiple medications can be used to treat a disease, whoever is first to develop a gene therapy drug wins.
When it comes to adeno-associated virus-based gene therapies, there is a lack of reliable and reproducible methods to consistently produce them. One of the key challenges you face when analyzing AAVs is determining whether the therapeutic transgene payload has been successfully incorporated into the AAV vector product.
During the manufacturing of AAV vectors, capsids containing the full payload of transgenes are produced. There is also a high percentage of capsids that might not incorporate any of the transgenes (empty), or contain fragments of the transgene (partial), that are produced as well. The presence of these impurities could increase immunogenicity or inhibit transduction of full capsids by competing for vector binding sites on cells. That is why successful incorporation of the transgene is critical for the efficacy and safety of gene therapies.
SCIEX has developed a breakthrough analytical method that is able to detect with great precision whether the AAV capsids are full, partially full or empty.
You will discover:
This is instrumental in improving and streamlining the development and production process for your AAV-based therapeutics. By giving you the right analytics, you will be able to develop better quality and safer products, all while reducing the cost to manufacture.
With the prospect of shorter analysis time and better analytics, request a copy of our technical note dedicated to teaching you all about our novel method. Find out how you can improve your drug development process with this method now.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.
Posted by
You must be logged in to post a comment.
Share this post with your network