https://sciex.com/content/SCIEX/na/us/en


7600 EAD and Zeno trap a powerful combination

Sep 17, 2021 | Biopharma, Blogs | 0 comments

Read time: 3 Minutes

A powerful combination: The Zeno trap and electron activated dissociation (EAD) fragmentation Sensitivity is a fundamental performance characteristic of a mass spectrometer. Increasingly higher sensitivities are in constant demand in order to characterize and quantify analytes that are at an ever decreasing abundance.

Electron activated dissociation or EAD is a ground-breaking approach for tandem mass spectrometry applications. While the industry standard collision induced dissociation (CID) has proven to be an invaluable tool for MS/MS experiments, the data produced using CID can leave gaps.

Together the Zeno trap and EAD fragmentation are a powerful combination.

You can now discover new levels of control, with a step change in fragmentation technology. You have the ability to create reproducible fragmentation patterns through high-energy collisions (CID) or, precisely disassemble molecules, exploring new perspectives.  You will be able to fine tune fragmentation energies, allowing controlled electron-activated dissociation of all molecule types.

These advanced fragmentation mechanisms create a myriad of insight within your reach. Zeno trap pulsing unlocks extraordinary sensitivity gains, uncovering information that has always existed undetected, adding new perspective to your quantitative and qualitative data.

Together the Zeno trap and EAD provide the ability to acquire key MS/MS features needed to:

  • Characterize large molecules including post-translational modifications
  • Elucidate positional isomers on small molecules and lipids
  • Identify and quantify proteins and peptides at unparalleled speed

  The Zeno trap: The next era of sensitivity for accurate mass

Ions are accumulated in the Zeno trap before being pulsed rapidly into the TOF, meaning up to 20x more ions can be detected. Consequently, each TOF experiment contains more useful MS/MS information, particularly on lower abundance species that were previously undetectable, introducing our customers to a new level of sensitivity.

Electron activated dissociation (EAD): A step change in fragmentation technology The ability to tune electron kinetic energy extends the utility of the approach to all molecule types from singly charged small molecules to large multiply charged proteins. EAD allows for a range of reagent free electron-based fragmentation mechanisms within one device, and has the capability to fragment peptides whilst retaining critical MS/MS information for both identification and localization of PTMs. Unlike other electron based fragmentation techniques, EAD delivers reproducible, consistent data, even at fast scan speeds, compatible with UHPLC timeframes, delivering higher efficiency than ETD.

A revolution in accurate mass has arrived.  The ZenoTOF 7600 high-resolution accurate mass system combines the power of Zeno trap pulsing with EAD fragmentation which allows for detection of very low abundant diagnostic fragment ion species leading to greater sequence coverage.

Now, you can watch as rare data becomes your everyday and your toughest challenges become your greatest advantage. Now, new discovery is not only possible, but quantifiable.

Welcome to the Zeno revolution.

Related to: RUO-MKT-19-13372-A, RUO-MKT-19-13373-A, RUO-MKT-18-13402-A and RUO-MKT-17-13406-A

Image based on this:

Questions and answers to help improve your mycotoxin analysis

During a recent webinar I shared method details for mycotoxin analysis on the SCIEX 7500 system. In this blog i will share the Q&A for the submitted questions that we did not have chance to answer during the live webinar.

A 2-fold revolution: MS approaches for the bioanalysis of oligonucleotide therapeutics

In 1998, the US Food and Drug Administration (FDA) approved fomivirsen as the first therapeutic oligonucleotide therapeutic. This approval marked a revolution of mechanism of action discovered decades before finally coming to fruition. Since then, the landscape of chemical modifications of oligonucleotides, conjugations and formulations has evolved tremendously, contributing to improvements in stability, efficacy and safety. Today, more than a dozen antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) drugs are on the market, most of which are designated as orphan drugs for treating rare genetic diseases.

Is “right first time, every time” a pipedream for metabolite identification by LC-MS?

If we lived in an ideal world, it would be possible to unambiguously identify metabolites using a single analytical experiment. This analytical technique would need to be efficient and easily generate the information needed from a routine assay that is also robust, enabling confident decision-making during drug discovery.

Posted by

Neil Walsh is the Senior Manager for Pharma global strategic marketing at SCIEX. In this role, he manages both the strategic market and marketing for the pharmaceutical industry. Neil has spent all his working life entrenched in the pharmaceutical industry from active research, sales and business development through to strategic marketing. Outside of work Neil enjoys rugby, cycling and spending time with his family

Tags


0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial