GEN-MKT-18-7897-A
Aug 4, 2023 | Blogs, Echo® MS+ system, Pharma | 0 comments
Read Time: 2 minutes
Bringing a new drug to market is a costly and complex process. With potentially hundreds of thousands of new compounds to screen during drug discovery, sample throughput is a common bottleneck for pharmaceutical companies. So how do you overcome this barrier?
The challenges Let’s dig a little deeper into some of the related organizational challenges. On average, the development time for a new drug is 10–15 years, and Deloitte recently reported that the average cost of approving a new pharmaceutical for clinical use rose to $2.3 billion in 20221. Since approximately 90% of new drug candidates fail during development, the ability to make early, informed and accurate decisions about the safety and efficacy of new leads is key to saving time, reducing costs and maximizing success.
The solution The Echo® MS system, which can provide accurate mass spectrometry data in seconds, can help ease these challenges. Based on Acoustic Ejection Mass Spectrometry (AEMS), this system removes the need for chromatographic separation, which increases analytical speed without compromising data quality.
This free infographic explores the concepts of AEMS-based workflows, and the benefits of using this approach for efficient and rapid lead optimization of drug candidates. For example:
Curious to know more? Learn more by exploring the following content, where data from the instrument is used to demonstrate what the system offers.
Rapid MS/MS analysis with Acoustic Ejection Mass Spectrometry (AEMS)
The Echo® MS system from SCIEX breaks through bottlenecks in quantitative mass spectrometry throughput. This technical note describes a rapid, chromatography-free approach to MS/MS analysis and showcases the potential of AEMS to dramatically change the field of high-throughput analysis.
High-throughput metabolite quantification for synthetic biology
This technical note shares a quantitative approach for the screening of 90 yeast strains to monitor over 60 metabolites. This workflow demonstrates the ability of the Echo® MS system to rapidly screen a biological matrix for key metabolites of interest with significantly reduced analysis times.
References
Echo® and Echo® MS are trademarks or registered trademarks of Labcyte, Inc. in the United States and other countries, and are being used under license.
The Echo® MS+ system is a novel platform for Acoustic Ejection Mass Spectrometry (AEMS) and combines the speed of acoustic sampling with the selectivity of mass spectrometry. This platform has been designed for high throughput analysis of small and large molecules. The technology combines Acoustic Droplet Ejection (ADE), an Open Port Interface (OPI) and could be coupled with the SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system.
The Echo® MS+ system comprises of an open-port interface (OPI) and acoustic droplet ejection (ADE) module which could be coupled with a mass spectrometer. The mass spectrometer could either be a SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system. This non-liquid chromatography based; high-throughput screening platform enables rapid analysis of compounds at speeds of up to 1 sample/second.
The ability to consistently achieve reproducible results on many complex samples across multiple days is critical to a routine clinical laboratory. Laboratories relying on analytical instrumentation require stability and robustness to perform a variety of screening and confirmatory assays with confidence. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the preferred analytical method in the clinical laboratory to reliably perform clinical testing as it provides best-in-class performance and reliability for the most challenging assays. LC-MS/MS offers the required levels of sensitivity and specificity for the detection and quantitation of molecules from complex biological samples, helping laboratories deliver highly accurate data for a variety of clinically relevant analytes across a wide range of assays.
Posted by
You must be logged in to post a comment.
Share this post with your network