An overview: LC-MS analysis of targeted protein degraders and their metabolites

Aug 14, 2024 | Blogs, Pharma, ZenoTOF 7600 system | 0 comments

Targeted protein degradersRead Time: 2 minutes

Targeted protein degraders (TPD) are a relatively new therapeutic modality that opens the potential to target disease-causing proteins. These disease-causing proteins have been highly challenging for traditional small-molecule therapeutics to treat, making TPDs an exciting new therapeutic modality.

We are still developing our knowledge about TPDs and their behavior and optimizing analytical protocols to characterize and monitor them within the drug development process.

TPD analysis

TPDs are typically dosed at low levels which makes their analysis in complex biological matrices challenging. Bioanalytical scientists who work with TPD compounds are striving to develop sensitive assays that reliably detect nanomolar concentrations of these highly potent drug candidates.

Learn more here > Targeted protein degraders and PROTACs (sciex.com)

TPD metabolite identification

Metabolite identification (MetID) is a critical step in drug development due to its impact on drug efficacy and safety. LC-MS platforms provide good selectivity and sensitivity making it the preferred technique for MetID. Traditionally, LC-MS experiments have used collision-induced dissociation (CID) to fragment and identify the metabolites. With some metabolites, the fragment ions generated by CID do not always generate a conclusive result leading to alternative techniques being needed to meet the regulatory requirements. Deploying electron-activated dissociation (EAD) can help in these circumstances.

In this webinar, An approach to streamline and simplify the identification of crucial metabolites from targeted protein degraders, Ebru Selen explains how EAD can be used for MetID analysis, allowing scientists to:

  • Achieve more accurate structure assignments when identifying drug metabolites
  • Enhance sensitivity with Zeno trap technology
  • Simplify data acquisition and processing for metabolite identification
Metabolite identification workflow

Metabolite identification workflow

What is electron-activated dissociation?

Electron-activated dissociation (EAD) is a fragmentation technique available on the ZenoTOF 7600 system that causes ions in an LC-MS/MS experiment to fragment in locations that differ from where they fragment with CID, providing additional information to scientists. For metabolite identification, this could mean confident localization of the site of metabolism, removing the need for further safety testing.

Join our email list for pharma news from SCIEX: Request information (sciex.com)

PFAS testing: 2024 in review and what to expect for 2025

For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.

Inside the box: Acoustic ejection mass spectrometry for drug discovery

On average, it takes 10-15 years and 1-2 billion dollars to approve a new pharmaceutical for clinical use. Since approximately 90% of new drug candidates fail in clinical development, the ability to make early, informed and accurate decisions on the safety and efficacy of new hits and leads is key to increasing the chances of success.

Unveiling the power of ZT Scan DIA: Insights from Ludwig Sinn’s presentation at World HUPO Congress 2024

In a recent presentation at the World HUPO Congress 2024, Ludwig Sinn from the Ralser lab shared exciting advancements in proteomics research, focusing on the innovative ZT Scan DIA acquisition modes developed in collaboration with SCIEX. Let us explore the key highlights and benefits of this innovative technology.

Posted by

Kirsten Craven is the Senior Global Marketing Manager for Pharma global strategic marketing at SCIEX. In this role, she manages strategic marketing for the pharmaceutical industry. Kirsten spent the first part of her career working in laboratories across multiple industries before moving into product management, and most recently pharma marketing.

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial