GEN-MKT-18-7897-A
Mar 28, 2018 | Blogs, Life Science Research, Lipidomics | 0 comments
Lipidomics research has progressed rapidly in the last decade. Twenty years ago, the determination of the lipid composition of a biological sample required slow and extensive multi-dimensional chromatographic separation and chemical derivatization strategies. Today, in-depth analysis can be performed quickly using high throughput analysis by mass spectrometry.
Advances in mass spectrometry have enabled in-depth lipidomic analyses with unparalleled qualitative and quantitative sensitivity. However, unambiguous identification and quantitation of lipid molecular species in total lipid extracts has proven to be difficult, primarily due to isobaric overlapping isobaric and isomeric species. There are greater than 100,000 lipid molecular species present in a typical biological lipid extract that occupy a narrow mass range (~400-1100 amu), making such overlap a significant problem.
SelexION Technology represents the next technological advance and is uniquely suited for lipidomic research. Using Differential Mobility Separation (DMS) as an upfront orthogonal separation enables the resolution of complex lipid mixtures, effectively addressing the problem of isobaric interferences among different lipid classes and sub-classes.
Key Features of SelexION Technology for Lipid Analysis
SelexION Technology is a planar differential mobility device that separates analytes based on differences in their chemical properties, prior to entering the instrument orifice, thus providing an orthogonal level of selectivity.
Read our technical paper to see how we effectively resolves multiple lipid classes from complex mixtures prior to analysis by mass spectrometry. By removing isobaric and isomeric interferences, lipid analysis by QTRAP systems using SelexION Technology enables more confident identification of lipid molecular species and provides for more accurate relative quantitation by MS/MS.
The Echo® MS+ system is a novel platform for Acoustic Ejection Mass Spectrometry (AEMS) and combines the speed of acoustic sampling with the selectivity of mass spectrometry. This platform has been designed for high throughput analysis of small and large molecules. The technology combines Acoustic Droplet Ejection (ADE), an Open Port Interface (OPI) and could be coupled with the SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system.
The Echo® MS+ system comprises of an open-port interface (OPI) and acoustic droplet ejection (ADE) module which could be coupled with a mass spectrometer. The mass spectrometer could either be a SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system. This non-liquid chromatography based; high-throughput screening platform enables rapid analysis of compounds at speeds of up to 1 sample/second.
The ability to consistently achieve reproducible results on many complex samples across multiple days is critical to a routine clinical laboratory. Laboratories relying on analytical instrumentation require stability and robustness to perform a variety of screening and confirmatory assays with confidence. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the preferred analytical method in the clinical laboratory to reliably perform clinical testing as it provides best-in-class performance and reliability for the most challenging assays. LC-MS/MS offers the required levels of sensitivity and specificity for the detection and quantitation of molecules from complex biological samples, helping laboratories deliver highly accurate data for a variety of clinically relevant analytes across a wide range of assays.
Posted by
You must be logged in to post a comment.
Share this post with your network