GEN-MKT-18-7897-A
Apr 17, 2018 | Biopharma, Blogs, Pharma | 0 comments
High selectivity is a key component of successful quantitative bioanalysis. As a bioanalyst, we need consistently accurate and robust quantitation of small molecule therapeutics and metabolites. Challenged by complicated matrix interferences, high baseline signal, and lack of isomer resolution, we need to embrace innovative strategies to increase the sensitivity and selectivity of our assays. If our ‘go-to’ is the development of complex HPLC conditions or modifying sample preparation procedures, we will find ourselves bogged down with time-consuming methods that reduce sample throughput. So, what’s the answer?
Imagine a new dimension in bioanalytical selectivity that you never thought possible. One that enables robust and reproducible bioanalytical methods, and meets high throughput requirements. One that reduces background noise, eliminates interferences and separates highly similar compounds, without having to resort to complex HPLC conditions or sample workup procedures.
Well this could very much be your reality.
Significant advances have been made in increasing MS/MS selectivity beyond the gold standard MRM. For example, MRM3 on the QTRAP® systems adds additional selectivity by increasing the number of fragmentation steps by the mass analyzer. Ion mobility presents another attractive option by introducing an orthogonal level of separation after sample ionization, followed by traditional m/z detection.
Although ion mobility techniques have been used extensively for qualitative applications, they have traditionally lacked the required ruggedness and speed required for quantitative bioanalysis. Not anymore, and hereby the end of the history lesson!
SelexION® DMS Technology provides an orthogonal level of separation. It is the first differential ion mobility separation technology to combine sensitivity and selectivity with unmatched reproducibility and robustness. It delivers enhanced analytical separations on demand for isobaric species and co-eluting contaminants, all in an elegantly simple package.
Along with the QTRAP 6500+ or 5500 systems, you get the power of differential ion mobility separation, enabled by multiple new innovations in ion mobility:
Do you want to know more? We thought you might, so we have developed some tech notes to support you in your quest to achieve high performing small molecule therapeutics and metabolite quantitation workflows in drug discovery and development:
If you are challenged by complex small molecule therapeutics and metabolite quantitation requiring advanced analytical selectivity, look no further. Download the eBook and get access to these technical papers, and so much more. Find out about The Science Behind SelexION Differential Ion Mobility Technology and how SeleXION Addresses Your Biggest Analytical Challenges.Download the eBook >
It is no secret that (bio)pharmaceutical research and development is complex, both scientific and regulatory processes. Here is an overview of just some of the ways SCIEX is working to support these challenges.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
Posted by
You must be logged in to post a comment.
Share this post with your network