A new generation of therapeutic modalities

Jun 8, 2020 | Biopharma, Blogs, Pharma | 0 comments

There are over 7,000 genetic diseases that could potentially be cured using gene therapy. Rare metabolic diseases, autoimmune disorders, cardiovascular disease and cancers are some of the top disease classes that can be addressed with gene therapies. With over 1,000 clinical trials involving gene therapies or oligonucleotides currently in various stages, and 11 gene therapy drugs already on the market, it is clear the potential benefit to human health is profound.

This new generation of therapeutic modalities presents unprecedented technological challenges in bringing therapies to patients. These challenges have affected both the speed and ultimate cost of bringing new therapies to market, with many gene therapeutics now categorized as some of the most expensive medications currently in existence. Ultimately, there is a lack of sufficient tools as we seek faster and more accurate methods for characterizing these new classes of drugs.

Although faced with many unique challenges and still at its very early stages, the global gene therapy market is growing rapidly. As of 2019, the size of this market is estimated to be more than $1 billion, and it is expected to expand at a compound annual growth rate (CAGR) of 32%. This growth is primarily driven by an increase in the number of clinical trials, the amount of government and private funding and the number of partnerships between small biotech and large pharmaceutical companies.

This type of growth brings many opportunities, and to take advantage of them, it is crucial that you are prepared with solutions to the challenges ahead. To help you succeed, we invite you to download a copy of the gene therapy and oligonucleotide compendium. This compendium was created with you in mind, and it aims to provide you with precision analytics that will help bring your therapies to market faster.

The compendium includes:

  • An overview of current trends and the market landscape
  • Workflows and approaches to purity testing, sizing sequencing and expression analysis
  • Strategies for better understanding the biological impact of genetic mutations and specific gene editing events
  • Discover how to accelerate your gene therapy and oligonucleotide development by getting the right answers the first time through precise analytics you can trust.

Download now >

PFAS testing: 2024 in review and what to expect for 2025

For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.

Inside the box: Acoustic ejection mass spectrometry for drug discovery

On average, it takes 10-15 years and 1-2 billion dollars to approve a new pharmaceutical for clinical use. Since approximately 90% of new drug candidates fail in clinical development, the ability to make early, informed and accurate decisions on the safety and efficacy of new hits and leads is key to increasing the chances of success.

Unveiling the power of ZT Scan DIA: Insights from Ludwig Sinn’s presentation at World HUPO Congress 2024

In a recent presentation at the World HUPO Congress 2024, Ludwig Sinn from the Ralser lab shared exciting advancements in proteomics research, focusing on the innovative ZT Scan DIA acquisition modes developed in collaboration with SCIEX. Let us explore the key highlights and benefits of this innovative technology.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial