https://sciex.com/content/SCIEX/na/us/en


A new generation of therapeutic modalities

Jun 8, 2020 | Biopharma, Blogs, Pharma | 0 comments

There are over 7,000 genetic diseases that could potentially be cured using gene therapy. Rare metabolic diseases, autoimmune disorders, cardiovascular disease and cancers are some of the top disease classes that can be addressed with gene therapies. With over 1,000 clinical trials involving gene therapies or oligonucleotides currently in various stages, and 11 gene therapy drugs already on the market, it is clear the potential benefit to human health is profound.

This new generation of therapeutic modalities presents unprecedented technological challenges in bringing therapies to patients. These challenges have affected both the speed and ultimate cost of bringing new therapies to market, with many gene therapeutics now categorized as some of the most expensive medications currently in existence. Ultimately, there is a lack of sufficient tools as we seek faster and more accurate methods for characterizing these new classes of drugs.

Although faced with many unique challenges and still at its very early stages, the global gene therapy market is growing rapidly. As of 2019, the size of this market is estimated to be more than $1 billion, and it is expected to expand at a compound annual growth rate (CAGR) of 32%. This growth is primarily driven by an increase in the number of clinical trials, the amount of government and private funding and the number of partnerships between small biotech and large pharmaceutical companies.

This type of growth brings many opportunities, and to take advantage of them, it is crucial that you are prepared with solutions to the challenges ahead. To help you succeed, we invite you to download a copy of the gene therapy and oligonucleotide compendium. This compendium was created with you in mind, and it aims to provide you with precision analytics that will help bring your therapies to market faster.

The compendium includes:

  • An overview of current trends and the market landscape
  • Workflows and approaches to purity testing, sizing sequencing and expression analysis
  • Strategies for better understanding the biological impact of genetic mutations and specific gene editing events
  • Discover how to accelerate your gene therapy and oligonucleotide development by getting the right answers the first time through precise analytics you can trust.

Download now >

Supporting new CRISPR gene editing systems

Prime editing (PE) is a next-generation gene editing technology that utilizes a Cas9 protein fused to a prime editing guide ribonucleic acid (pegRNA) to achieve high CRISPR/Cas9 editing efficiency and precision. However, the length requirement of pegRNAs at 120–250 nucleotides (nt) and their high level of secondary structure formation present analytical challenges for the purity analysis of chemically synthesized pegRNAs during development and quality control (QC).

A new approach for comprehensive AAV evaluation including full and empty analysis

Certain next-gen vaccines and gene therapy applications rely on the usage of adeno-associated viruses (AAV) as a delivery vehicle. To ensure the safety and efficacy of viral vector drugs, multiple critical quality attributes (CQAs) need to be well characterized.

The rising tide of food allergies: Common questions and crucial insights

Allergy policies for nut-free commercial flights and nut-free childcare settings are not a rare occurrence nowadays—the reason is a rise in food allergies. Nuts are the most potent allergenic foods in terms of the amount that is required to elicit an allergic reaction and the severity of those reactions.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial