What is your Method for Separating Challenging Polar Molecules?

May 22, 2017 | Biopharma, Blogs | 0 comments

From small ions like phosphate, herbicide degradation to metabolites, oligosaccharides, peptides, and proteins. How is your lab analyzing polar molecules? The reason I ask is there is a saying, if you have a charged or polar molecule, look to capillary electrophoresis (CE) first. While liquid chromatography (LC) is an ideal front-end separation tool for many types of molecules, as the following poster points out, “From Small to Very Large, Orthogonal, Sensitive Polar Molecule Analysis by CESI-MS,” there are some situations that call for CE over LC analysis. For those of you that are not familiar with CESI-MS, it is the combining of CE separation with electrospray ionization, into one dynamic process, within the same device. View the Poster >

Complex Polar Molecules
Let me explain. Although effective, analysis by traditional LC-MS methods can present challenges that are addressed by the aqueous nature of capillary zone electrophoresis (CZE)-based separations. Therefore, if you have a choice of using LC-MS or CESI-MS when it comes to complex or polar molecules, the latter is ideal for your testing purposes since you can see and get high-resolution separation of PTMs missed by LC-MS methods. Such is the case for large molecules like intact monoclonal antibodies, and for small molecules, CESI can separate geometric isomers and isobaric compounds prior to mass spec analysis. 

Want to see how CESI-MS plays out in the lab? View the Poster and get to know how molecules can be separated to differentiate their subtle structural changes. Collectively you’ll discover how the examples illustrate the simplicity of buffer systems that allow for the analysis of a wide range of highly relevant polar molecules by CESI-MS like phosphonate/phosphate for herbicide analysis to metabolites, oligosaccharides, and intact proteins.

What is more, you will also discover how you can improve the sensitivity, speed, and comprehensiveness of polar biomolecule analysis such as the separation of polar herbicide glyphosate and fungicide fosetyl aluminum. It’s not just polar ions the researchers put to the test either. Read about the results of anionic metabolites, glycans, and intact proteins too. 

Find out how you can save time and resources using CESI-MS technology and read more about CE technology >

 

Plasmid manufacturing: Setting up your CGT programs for success

Plasmid DNA serves a variety of purposes, from critical starting material for proteins, mRNA, viral vectors, and drug substances. Below, Dr. Emma Bjorgum, the Vice President of Client Services of the DNA Business Unit at Aldevron and an expert in plasmid manufacturing, provided insights into the process and an outlook on the future.

Unlocking precision: navigating data conversion in metabolomics

Useful FAQ document to enable researchers to focus on their scientific discoveries and insights rather than the complexities of data management.

Understanding PFAS and its impact on U.S. drinking water

In recent years, per- and polyfluoroalkyl substances (PFAS), often referred to as “forever chemicals,” have become a growing topic of interest due to their persistence in the environment and potential health risks. These synthetic compounds have been widely used in various industrial applications and consumer products since the 1940s. PFAS can be found in the air, soil, and water, and studies have shown that most people have detectable levels of PFAS in their bloodstream. One of the main exposure pathways for humans is through drinking water, particularly in communities located near industrial sites, military bases, or areas where firefighting foam has been used.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial