New Methods for N-Glycan Sequencing Provide Structural Information in as Little as 1 Hour

Jan 2, 2019 | Biopharma, Blogs | 0 comments

As interest in N-glycan analysis grows within the biopharma industry, innovation continues allowing analyses to be done in less time with fewer and less tedious, sample preparation steps. One of these recent innovations was the release of the SCIEX Fast Glycan Technology which offers a simplified 60-minute sample prep, 5-minute separations, and automatic glycan identification. But what happens when you have an unknown peak in your sample, or if you need to confirm the structural identity of a critical glycan species? Well, developments in N-glycan analysis has continued with new methods for N-Glycan sequencing which provide complete structural elucidation in as little as 1 hour.

Having Problems With Glycan Sequencing?
Previously, carbohydrate sequencing was a tedious and time-consuming manual process. It required either consecutive addition of sequencing exoglycosidase enzymes to a single vial, which could take up to a week, or arrays of enzymes in multiple vials and parallel processing of samples which could still take a full day.

Combatting Glycan Sequencing Challenges: To break through the problems associated with older sequencing methods, two different approaches have been developed that significantly decrease manual steps and reduces the analysis time from 1–5 days to 1–2 hours. These are both semi- and fully-automated methods which can be used on your existing PA 800 Plus Pharmaceutical Analysis System together with the award-winning Fast Glycan Technology to give you the reliable data you need faster.

Differences Between Semi- and Fully- Automated Methods: The semi-automated, array-based sequencing requires only 1 hour (including reaction times, digestions, and the CE-LIF separations). However, manual pre-mixing of the enzyme mixtures is required, as well as a higher concentration of your IgG1 sample. The fully automated workflow does not require any pre-analysis of reaction arrays, but due to its serial nature, the total sequencing time was just over 2 hours. The flexibility to choose between these methods means that you can optimize your analysis for speed or ease of use depending on your needs.

If you’re interested in learning more about the new automated N-glycan sequencing methods, fill out the form on the right to watch the webinar, Sequence Your Biopharma N-Glycans in as Little as 1 Hour.



What are the differences between EPA methods 533 and 537.1?

With the risk of per- and polyfluoroalkyl substances (PFAS) contamination and accumulation in humans and wildlife on the rise, it is important to continuously improve and demonstrate capabilities for accurate and precise low-level quantification in research and...

Rescheduling a Schedule I substance, and the Delta-8 controversy

Did you know that in the US, drugs and other chemicals are classified into 5 distinct categories depending on the drug’s acceptable medical use and its potential for abuse or dependency?  Drugs federally classified as Schedule I substances by the US Drug Enforcement Administration (DEA) are considered to have the highest potential for abuse and for creating severe psychological and/or physical dependence. In addition to heroin, LSD and MDMA (ecstasy), cannabis is classified as a Schedule I substance in the Controlled Substance Act of 1970, which means it has no approved medical usage.

The pros and cons of using solid phase extraction and direct injection methods for PFAS testing

US Environmental Protection Agency (EPA) and Department of Defense (DoD) methods for testing per- and polyfluoroalkyl substances (PFAS) in drinking water require using solid phase extraction (SPE). SPE has been used extensively in environmental contaminant analysis both for concentrating large sample volumes (improving method sensitivity) and removing matrix interferences (sample cleanup).

Posted by


Submit a Comment