GEN-MKT-18-7897-A
Aug 14, 2024 | Blogs, Pharma, ZenoTOF 7600 system | 0 comments
Read Time: 2 minutes
Targeted protein degraders (TPD) are a relatively new therapeutic modality that opens the potential to target disease-causing proteins. These disease-causing proteins have been highly challenging for traditional small-molecule therapeutics to treat, making TPDs an exciting new therapeutic modality.
We are still developing our knowledge about TPDs and their behavior and optimizing analytical protocols to characterize and monitor them within the drug development process.
TPDs are typically dosed at low levels which makes their analysis in complex biological matrices challenging. Bioanalytical scientists who work with TPD compounds are striving to develop sensitive assays that reliably detect nanomolar concentrations of these highly potent drug candidates.
Learn more here > Targeted protein degraders and PROTACs (sciex.com)
Metabolite identification (MetID) is a critical step in drug development due to its impact on drug efficacy and safety. LC-MS platforms provide good selectivity and sensitivity making it the preferred technique for MetID. Traditionally, LC-MS experiments have used collision-induced dissociation (CID) to fragment and identify the metabolites. With some metabolites, the fragment ions generated by CID do not always generate a conclusive result leading to alternative techniques being needed to meet the regulatory requirements. Deploying electron-activated dissociation (EAD) can help in these circumstances.
In this webinar, An approach to streamline and simplify the identification of crucial metabolites from targeted protein degraders, Ebru Selen explains how EAD can be used for MetID analysis, allowing scientists to:
Metabolite identification workflow
Electron-activated dissociation (EAD) is a fragmentation technique available on the ZenoTOF 7600 system that causes ions in an LC-MS/MS experiment to fragment in locations that differ from where they fragment with CID, providing additional information to scientists. For metabolite identification, this could mean confident localization of the site of metabolism, removing the need for further safety testing.
Join our email list for pharma news from SCIEX: Request information (sciex.com)
Trifluoroacetic acid (TFA) is emerging as one of the most concerning ultrashort-chain PFAS in Europe’s food supply – particularly in cereals, a staple consumed daily by millions. A report from PAN Europe reveals a widespread and largely unmonitored contamination trend that raises serious questions about food safety, regulatory blind spots, and future monitoring strategies.
PFAS analysis is complex, but expert guidance doesn’t have to be. In this episode of our ‘Ask the PFAS expert series’, we’re joined by Michael Scherer, Application Lead for Food and Environmental, to answer the most pressing questions in PFAS analysis. From why LC-MS/MS systems are the gold standard for analyzing diverse PFAS compounds, to which EU methods deliver reliable results for drinking water, and to practical steps to prevent contamination, Michael shares actionable insights to help laboratories achieve accuracy, consistency, and confidence in their workflows.
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
Posted by
You must be logged in to post a comment.
Share this post with your network