GEN-MKT-18-7897-A
Apr 13, 2020 | Blogs, Food / Beverage, Life Science Research, Proteomics | 0 comments
About 220 million people worldwide live with a food allergy.1 These numbers, along with the complexity and severity of conditions, continue to rise. In America, there are about 32 million food allergy sufferers—5.6 million of those are children under the age of 18.2.2 That’s 1 out of every 13 children, or about 2 in every classroom. From a financial perspective, the cost of food allergy childcare for US families is up to $25 billion annually.
What is a food allergy?A food allergy is an adverse health effect resulting from a specific immune response that occurs reproducibly from exposure to a given food. Food allergens are proteins that can be tolerated by most people but, in some sensitive individuals, can cause a severe, even life-threatening, reaction known as anaphylaxis.
There is no cure for severe food allergy, so complete avoidance is required. Allergic consumers rely heavily on product labeling to help them do just that. There are more than 170 foods that are reported to cause allergenic reactions. In the US, the 8 major food allergens responsible for most of the severe reactions must be declared: eggs, fish, milk, peanuts, tree nuts, shellfish or crustacean, soy and wheat.2 In the UK this list also includes 6 additional food allergens: celery, lupin, mollusks, mustard, sesame seeds and sulfur dioxide and sulfites.3
Testing is critical to ensure food safetyA study led by Michelle Colgrave and James Broadbent of the Commonwealth Scientific and Industrial Research Organization (CSIRO) found that common methods, such as the antibody-based ELISA, are not always appropriate in complex food matrices. Drawing from their experience with gluten detection using liquid chromatography-mass spectrometry (LC-MS), they developed an alternative, complementary proteomics approach to detect allergenic proteins. This approach could be the first step toward the development of a routine food testing assay.
Colgrave and Broadbent’s study focused on seafood allergy for the following reasons:
From the target groups, 3 types of shrimp and prawns were chosen based on their production worldwide. (Whiteleg shrimp is one of the most commonly caught aquatic species.)
Detecting proteins by their piecesThe analysis followed these steps:
The generic workflow for protein detection and quantification using LC-MSBefore you watch the webinar, here’s a summary of the research approach.
To learn more about their work, watch their webinar by filling out the form on your right, where they describe their ongoing work on the proteome analysis of shellfish. They share data from the initial detection and identification of shellfish proteins by LC-QqTOF, and some early results of targeted allergen analysis using LC-QqQ mass spectrometry. They conclude with their goals for the second phase of the project.
Fill out the form on your right to watch the webinar.
RUO-MKT-18-10425-A
The Echo® MS+ system is a novel platform for Acoustic Ejection Mass Spectrometry (AEMS) and combines the speed of acoustic sampling with the selectivity of mass spectrometry. This platform has been designed for high throughput analysis of small and large molecules. The technology combines Acoustic Droplet Ejection (ADE), an Open Port Interface (OPI) and could be coupled with the SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system.
The Echo® MS+ system comprises of an open-port interface (OPI) and acoustic droplet ejection (ADE) module which could be coupled with a mass spectrometer. The mass spectrometer could either be a SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system. This non-liquid chromatography based; high-throughput screening platform enables rapid analysis of compounds at speeds of up to 1 sample/second.
The ability to consistently achieve reproducible results on many complex samples across multiple days is critical to a routine clinical laboratory. Laboratories relying on analytical instrumentation require stability and robustness to perform a variety of screening and confirmatory assays with confidence. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the preferred analytical method in the clinical laboratory to reliably perform clinical testing as it provides best-in-class performance and reliability for the most challenging assays. LC-MS/MS offers the required levels of sensitivity and specificity for the detection and quantitation of molecules from complex biological samples, helping laboratories deliver highly accurate data for a variety of clinically relevant analytes across a wide range of assays.
Posted by
You must be logged in to post a comment.
Share this post with your network