GEN-MKT-18-7897-A
Apr 13, 2020 | Blogs, Food / Beverage, Life Science Research, Proteomics | 0 comments
About 220 million people worldwide live with a food allergy.1 These numbers, along with the complexity and severity of conditions, continue to rise. In America, there are about 32 million food allergy sufferers—5.6 million of those are children under the age of 18.2.2 That’s 1 out of every 13 children, or about 2 in every classroom. From a financial perspective, the cost of food allergy childcare for US families is up to $25 billion annually.
What is a food allergy?A food allergy is an adverse health effect resulting from a specific immune response that occurs reproducibly from exposure to a given food. Food allergens are proteins that can be tolerated by most people but, in some sensitive individuals, can cause a severe, even life-threatening, reaction known as anaphylaxis.
There is no cure for severe food allergy, so complete avoidance is required. Allergic consumers rely heavily on product labeling to help them do just that. There are more than 170 foods that are reported to cause allergenic reactions. In the US, the 8 major food allergens responsible for most of the severe reactions must be declared: eggs, fish, milk, peanuts, tree nuts, shellfish or crustacean, soy and wheat.2 In the UK this list also includes 6 additional food allergens: celery, lupin, mollusks, mustard, sesame seeds and sulfur dioxide and sulfites.3
Testing is critical to ensure food safetyA study led by Michelle Colgrave and James Broadbent of the Commonwealth Scientific and Industrial Research Organization (CSIRO) found that common methods, such as the antibody-based ELISA, are not always appropriate in complex food matrices. Drawing from their experience with gluten detection using liquid chromatography-mass spectrometry (LC-MS), they developed an alternative, complementary proteomics approach to detect allergenic proteins. This approach could be the first step toward the development of a routine food testing assay.
Colgrave and Broadbent’s study focused on seafood allergy for the following reasons:
From the target groups, 3 types of shrimp and prawns were chosen based on their production worldwide. (Whiteleg shrimp is one of the most commonly caught aquatic species.)
Detecting proteins by their piecesThe analysis followed these steps:
The generic workflow for protein detection and quantification using LC-MSBefore you watch the webinar, here’s a summary of the research approach.
To learn more about their work, watch their webinar by filling out the form on your right, where they describe their ongoing work on the proteome analysis of shellfish. They share data from the initial detection and identification of shellfish proteins by LC-QqTOF, and some early results of targeted allergen analysis using LC-QqQ mass spectrometry. They conclude with their goals for the second phase of the project.
Fill out the form on your right to watch the webinar.
RUO-MKT-18-10425-A
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.
Posted by
You must be logged in to post a comment.
Share this post with your network